
11/20/2007 1

CSE P503:

Principles of

Software

Engineering

David Notkin

Autumn 2007

Software tools & environments

The difference between a tool and a machine is

not capable of very precise distinction…

--Charles Babbage

Tool vendors have made a good start, but have

much work to do in tools that depend on

compilers and other source code analyzers.

--Bjarne Stroustrop

11/20/2007 2

Tonight

• Some historical background on programming

environments and CASE

• A variety of tools and their underlying analysis

11/20/2007 3

Some classic environments

• Interlisp

• Smalltalk-80

• Unix

• Cedar

11/20/2007 4

Interlisp (Xerox PARC)

• Teitelman & Masinter, 1981

• Language-centered environment

• Very fast turnaround for code changes

• Monolithic address space

– Environment, tools, application code commingled

• Code and data share common representation

11/20/2007 5

Smalltalk-80 (Xerox PARC)

• Goldberg, 1984

• Language-centered environment (OO)

– Classes as first-class objects, inheritance, etc.

• Environment structured around language features

(class browsers, protocols, etc.)

• Rich libraries (data structures, UI, etc.)

11/20/2007 6

Unix (Bell Labs)

• Toolkit-based environment

• Simple integration mechanism

– Convenient user-level syntax for composition

• Standard shared representation

• Language-independent (although biased)

• Efficient for systems’ programming

11/20/2007 7

Cedar (Xerox PARC)

• Teitelman, 1984

• Intended to mix best features of Interlisp, Smalltalk-

80, and Mesa

• Primarily was an improvement on Mesa

– Language-centered environment

– Abstract data type language

• Strong language and environment support for

interfaces

– Key addition: garbage collection

11/20/2007 8

Commercialization: a decade ago

• A decade ago, 22 companies matched ―CASE‖ in

Company Profiles database

– About 10,000 matched ―software‖

– 23 matched ―application development‖

• A decade ago, 3 Yahoo CASE categories

– 55-60 registered CASE pages in Yahoo

– (35 Java categories, thousands of pages)

11/20/2007 9

The business of CASE

• IDE (Software through Pictures)

– Founded 1983

– Acquired by Thomson-CSF 1996

• ~$10M annual sales

• Rational

– Founded 1982

– $572M sales in 2000

– Acquired by IBM

11/20/2007 10

The business of CASE

• Popkin

– Founded 1986

• ~$15M annual sales

• Cayenne Software, Inc. (1996)

– Merger of Bachman (1983) and CADRE (1982)

• ~$14M annual sales

• Now out of business

• StructSoft (TurboCASE/Sys)

– Formed 1984

• ~$6M annual sales

11/20/2007 11

The business of CASE

• I-Logix

– Founded 1987

• ~$10M annual sales

• Reasoning Systems

– Founded 1984

• ~$20M annual sales

11/20/2007 12

CASE quotation I

• ―Despite the many grand predictions of the trade

press over the past decade, computer-assisted

software engineering (CASE) tools failed to emerge

as the promised `silver bullet.’‖

– Guinan, Cooprider, Sawyer; IBM Systems Journal,

1997

11/20/2007 13

CASE quotation II

• ―CASE tools are sometimes excessively rigid in

forcing the user to input too much information before

giving usable results back. CASE tools also typically

don't adapt to multiple or in-house methodologies…‖

– www.confluent.com; 1997

11/20/2007 14

Tools

• The pendulum swings back and forth between

integrated environments and tools

• In the mid-1990’s, the shift was to tools

• It is now back on environments: Eclipse, Visual

Studio, etc…

– It may remain here for lots of reasons

11/20/2007 15

Programming language analysis

• The underlying premises and implementation

structures for many tools and language

implementations are closely related to programming

language analysis

• Examples include:

– The program dependence graph representation is

heavily used in program optimization and

parallelization, as well as in software engineering

tools

– Type inference is being used increasingly broadly

as the basis for some software engineering tools

• We’ll see one concrete example, Lackwit

11/20/2007 16

Type inferencing

• One downside of type systems is that the programmer

has to write more ―stuff‖

• Type inferencing has the compiler compute what the

types of the expressions should be

– The programmer writes less down

– The programmer has less to change when the

program is modified

– The programmer gets almost all the benefits of

static typing

11/20/2007 17

A classic static tool: slicing

• Of interest by itself

• And for the underlying representations

– Originally, data flow

– Later, program dependence graphs

11/20/2007 18

Slicing, dicing, chopping

• Program slicing is an approach to selecting

semantically related statements from a program

[Weiser]

• In particular, a slice of a program with respect to a

program point is a projection of the program that

includes only the parts of the program that might

affect the values of the variables used at that point

– The slice consists of a set of statements that are

usually not contiguous

11/20/2007 19

Basic ideas

• If you need to perform a software engineering task,

selecting a slice will reduce the size of the code base

that you need to consider

• Debugging was the first task considered

– Weiser even performed some basic user studies

• Claims have been made about how slicing might aid

program understanding, maintenance, testing,

differencing, specialization, reuse and merging

11/20/2007 20

Example

read(n)

i := 1;

sum := 0;

product := 1;

while i <= n do begin

sum := sum + i;

product :=

product * i;

i := i + 1;

end;

write(sum);

write(product);

This example (and other material) due in part to Frank Tip

read(n)

i := 1;

sum := 0;
product := 1;

while i <= n do begin

sum := sum + i;
product :=

product * i;

i := i + 1;
end;

write(sum);
write(product);

11/20/2007 21

Weiser’s approach

• For Weiser, a slice was a reduced, executable

program obtained by removing statements from a

program

– The new program had to share parts of the

behavior of the original

• Weiser computed slices using a dataflow algorithm,

given a program point (criterion)

– Using data flow and control dependences,

iteratively add sets of relevant statements until a

fixpoint is reached

11/20/2007 22

Ottenstein & Ottenstein

• Build a program dependence graph (PDG)

representing a program

• Select node(s) that identify the slicing criterion

• The slice for that criterion is the reachable nodes in

the PDG

11/20/2007 23

PDG for the example

•Thick lines are control dependences

•Thin lines are (data) flow dependences

11/20/2007 24

Procedures

• What happens when you have procedures and still

want to slice?

• Weiser extended his dataflow algorithm to

interprocedural slicing

• The PDG approach also extends to procedures

– But interprocedural PDGs are a bit hairy (Horwitz,

Reps, Binkley used SDGs)

– Representing conventional parameter passing is

not straightforward

11/20/2007 25

The next slide...

• ..shows a very fuzzy version of the SDG for a version

of the product/sum program

– Procedures Add and Multiply are defined

– They are invoked to compute the sum, the product

and to increment i in the loop

11/20/2007 26

11/20/2007 27

Context

• A big issue in interprocedural slicing is whether

context is considered

• In Weiser’s algorithm, every call to a procedure could

be considered as returning to any call site

– This may significantly increase the size of a slice

11/20/2007 28

Reps et al.

• Reps and colleagues have a number of results for

handling contextual information for slices

• These algorithms generally work to respect the call-

return structure of the original program

– This information is usually captured as summary

edges for call nodes

11/20/2007 29

Technical issues

• How to slice in the face of unstructured control flow?

• Must slices be executable?

• What about slicing in the face of pointers?

• What about those pesky preprocessor statements?

11/20/2007 30

LCLint [Evans et al.]

• [Material taken in part from a talk by S. Garland]

• Add some partial specification information to C code

to

– Detect potential bugs

– Enforce coding style

• Versatile and lightweight

– Incremental gain for incremental effort

– Fits in with other tools

11/20/2007 31

Detects potential bugs

• Specifications enable more accurate checks,

messages

• Memory management a particular problem in the C

language

11/20/2007 32

Enforces coding style

• Abstraction boundaries

• Use of mutable and immutable types

11/20/2007 33

LCLint Does Not

• Encourage programmer to write

– Contorted code

– Inefficient code

• Report only actual errors

• Report all errors

• Insist on reporting a fixed set of potential errors

– Many options and control flags

11/20/2007 34

Ex: Definition before Use

• Sample code…can annotate in several ways

– if (setVal(n, &buffer)) ...

• Must buffer be defined before calling setVal?

– Yes: bool setVal(int d, char *val);

– No: bool setVal(int d, out char *val);

• Is buffer defined afterwards?

– Yes: bool setVal(...); {modifies *val;}

– Maybe: bool setVal(...); {modifies nothing;}

– NO!: bool setVal(...); {ensures trashed(val);}

11/20/2007 35

More Accurate Checks

• Conventional lint tools report

– Too many spurious errors

– Too few actual errors

• Because

– Code does not reveal the programmer’s intent

– Fast checks require simplifying assumptions

• Specifications give good simplifying assumptions

11/20/2007 36

Abstraction Boundaries

• Client code should rely only on specifications

• Types can be specified as abstract
– immutable type date;

• date nextDay(date d); { }

– mutable type set;

• void merge(set s, set t); {modifies s;}

• LCLint detects

– Inappropriate access to representation

• Including use of ==

– Inappropriate choice of representation

• E.g., for meaning of = (sharing)

11/20/2007 37

Checking Abstract Types

• Specification: set.lcl contains the single line

– mutable type set;

• Client code

– #include “set.h”

bool f(set s, set t) {

if (s->size > 0) return (s == t);

...

• > lclint set client.c

– client.c:4,7:

Arrow access field of abstract type

(set): s->size

– client.c:5,13:

Operands of == are abstract

type (set): s == t

11/20/2007 38

Checking Side Effects

• Specification:
void set_insert (set s, int e)

{ modifies s;}

void set_union(set s, set t)

{ modifies s;}

• Code (in set.c) :
void set_union (set s, set t) {

int i;

for (i = 0; i < s->size; i++)

set_insert(t, s->elements[i]);

}

• Message:

– set.c:35, 27:

Called procedure set_insert may modify t:

set_insert(t, s->elements[i])

11/20/2007 39

Checking Use of Memory

• Specifications

– only char *gname;

. . .

void setName (temp char *pname) char *gname;

• Code

– void setName (char *pname) {

gname = pname;

}

• LCLint error messages

– sample.c:2:3: Only storage gname not released

before assignment:

gname = pname

– sample.c:2:3: Temp storage assigned to only:

gname = pname

11/20/2007 40

If C Were Better...

• Would LCLint still help?

• Yes, because specifications

– contain information not in code

– contain information that is hard to infer from code

– are usable with legacy code, existing compilers

– can be written faster than languages can be

changed

– are important even with better languages

11/20/2007 41

Experience with LCLint

• Reliable and efficient

– Runs at compiler speed

• Used on both new and legacy code

– 1,000-200,000 line programs

– Over 500 users have sent e-mail to MIT

• Tested with varying amounts of specification

– Lots to almost none

– LCLint approximates missing specifications

• Results encouraging

11/20/2007 42

Understanding Legacy Code

• Analyzed interpreter (quake) built at DEC SRC

• Discovered latent bugs (ordinary lint can do this)

• Discovered programming conventions

– Documented use of built-in types (int, char, bool)

– Identified (and repaired) (nearly) abstract types

• Documented action of procedures

– Use of global information, side-effects

• Enhanced documentation a common thread

– Easier to read and write because formulaic

– More trustworthy because checked

11/20/2007 43

Fundamental benefit

• Partial specifications

• Low entry cost

• You get what you pay for (or maybe a bit more)

11/20/2007 44

Lackwit (O’Callahan & Jackson)

• Code-oriented tool that exploits type inference

• Answers queries about C programs

– e.g., ―locate all potential assignments to this field‖

– Accounts for aliasing, calls through function

pointers, type casts

• Efficient

11/20/2007 45

Placement

• Lexical tools are very general, but are often imprecise

because they have no knowledge of the underlying

programming language

• Syntactic tools have some knowledge of the

language, are harder to implement, but can give more

precise answers

• Semantic tools have deeper knowledge of the

language, but generally don’t scale, don’t work on real

languages and are hard to implement

11/20/2007 46

Lackwit

• Semantic

• Scalable

• Real language (C)

• Static

• Can work on
incomplete programs

– Make
assumptions
about missing
code, or supply
stubs

•Sample queries

–Which integer variables contain file
handles?

–Can pointer foo in function bar be
passed to free()? If so, what paths in
the call graph are involved?

–Field f of variable v has an incorrect
value; where in the source might it have
changed?

–Which functions modify the cur_veh
field of map_manager_global?

11/20/2007 47

Lackwit analysis

• Approximate (may return false positives)

• Conservative (may not return false negatives) under

some conditions

– C’s type system has holes

– Lackwit makes assumptions similar to those made

by programmers (e.g., ―no out-of-bounds memory

accesses‖)

– Lackwit is unsound only for programs that don’t

satisfy these assumptions

11/20/2007 48

Query commonalities

• There are a huge number of names for storage

locations

– local and global variables; procedure parameters;

for records, etc., the sub-components

• Values flow from location to location, which can be

associated with many different names

• Archetypal query: Which other names identify

locations to which a value could flow to or from a

location with this given name?

– Answers can be given textually or graphically

11/20/2007 49

An example

• Query about the
cur_veh field of
map_manager_global

• Shaded ovals are
functions extracting
fields from the global

• Unshaded ovals pass
pointers to the structure
but don’t manipulate it

• Edges between ovals
are calls

• Rectangles are globals

• Edges to rectangles
are variable accesses

11/20/2007 50

Claim

• This graph shows which functions would have to be

checked when changing the invariants of the current

vehicle object

– Requires semantics, since many of the

relationships are induced by aliasing over pointers

11/20/2007 51

Underlying technique

• Use type inference, allowing type information to be

exploited to reduce information about values flowing

to locations (and thus names)

• But what to do in programming languages without rich

type systems?

11/20/2007 52

Trivial example

• DollarAmt

getSalary(EmployeeNum e)

• Relatively standard
declaration

• Allows us to determine
that there is no way for the
value of e to flow to the
result of the function

– Because they have
different types

• int

getSalary(int e)

• Another, perhaps more
common, way to declare the
same function

• This doesn’t allow the direct
inference that e’s value
doesn’t flow to the function
return

– Because they have the
same type

• Demands type inference
mechanism for precision

11/20/2007 53

Lackwit’s type system

• Lackwit ignores the C type declarations

• Computes new types in a richer type system

•char* strcpy(char* dest,char* source)

•(num ref, num  ref) num  ref

• Implies

–Result may be aliased with dest (flow between pointers)

–Values may flow between the characters of the parameters

–No flow between source and dest arguments (no aliasing)

11/20/2007 54

Incomplete type information

• void* return1st(void* x,void* y) {

return x; }

• (a ref, b) a ref

• The type variable a indicates that the type of the contents of the
pointer x is unconstrained

– But it must be the same as the type of the contents of pointer
y

• Increases the set of queries that Lackwit can answer with
precision

11/20/2007 55

Polymorphism

• char* ptr1;

struct timeval* ptr2;

char** ptr3;

…

return1st(ptr1,ptr2); return1st(ptr2,ptr3)

• Both calls match the previous function
declaration

• This is solved (basically) by giving return1st a
richer type and instantiating it at every call site

– (c ref, d) c ref

– (e ref, f) e ref

11/20/2007 56

Type stuff

• Modified form of Hindley-Milner algorithm ―W‖

• Efforts made to handle

– Mutable types

– Recursive types

– Null pointers

– Uninitialized data

– Type casts

– Declaration order

•*from1 is not compatible

with either *from2 or *to2

–But it is with

copy:*from,

copy:*to,

copy5:*from +

copy5:*to

11/20/2007 58

Program invariants

• One way to try to manage the complexity of software

systems is to use program invariants

• Invariants can aid in the development of correct

programs

– The invariants are defined explicitly as part of the

construction of the program

[Dijkstra][Hoare][Gries][…]

11/20/2007 59

Invariants and evolution

• Invariants can aid in the evolution of software as well

• In particular, programmers can easily make changes

that violate unstated invariants

– The violated invariants are often far from the site of

the change

– These changes can cause errors

– The presence of invariants can reduce the number

of or cost of finding these violations

11/20/2007 60

Other uses for invariants

• Documenting code

• Checking assumptions: convert to assert

• Locating unusual conditions

• Providing hints for higher-level profile-directed

compilation [Calder]

• Bootstrapping proofs [Wegbreit][Bensalem]

• …

11/20/2007 61

Today’s focus

• An approach to make invariants more prevalent and

more practical

• Underlying assumption:

– The presence of invariants will reduce the difficulty

and cost of evolution

• Goal: recover invariants from programs

• Technique: run the program, examine values

• Artifact: Daikon

11/20/2007 62

Goal: Recover invariants

• Detect invariants such as those found in assert
statements or specifications

– x > abs(y)

– x = 16*y + 4*z + 3

– array a contains no duplicates

– for each node n, n = n.child.parent

– graph g is acyclic

– …

11/20/2007 63

Experiment 1 [Gries 81]:
Recover formal specifications

// Sum array b of length n into

// variable s

i := 0; s := 0;

while i  n do

{ s := s+b[i]; i := i+1 }

Precondition: n  0

Postcondition: S = 
0  j < n

b[j]

Loop invariant:

0  i  n and S = 
0  j < i

b[j]

11/20/2007 64

Test suite

• 100 randomly-generated arrays

– length uniformly distributed from 7 to 13

– elements uniformly distributed from –100 to 100

• First guess for a test suite

– Turned out to work well

– More on test suites later on

11/20/2007 65

Inferred invariants

ENTRY:

N = size(B)

N in [7..13]

B: All elements in [-100..100]

EXIT:

N = I = orig(N) = size(B)

B = orig(B)

S = sum(B)

N in [7..13]

B: All elements in [-100..100]

11/20/2007 66

Inferred loop invariants

LOOP:

N = size(B)

S = sum(B[0..I-1])

N in [7..13]

I in [0..13]

I <= N

B: All elements in [-100..100]

B[0..I-1]: All elements in [-100..100]

11/20/2007 67

Experiment 2:

Code without explicit invariants

• 563-line C program: regular expression search &

replace [Hutchins][Rothermel]

• Task: modify to add Kleene +

• Complementary use of both detected invariants and

traditional tools (such as grep)

11/20/2007 68

Programmer use of invariants

• Helped explain use of data structures

– regexp compiled form (a string)

• Contradicted some maintainer expectations

– anticipated lj < j in makepat

– queried for counterexample

– avoided introducing a bug

• Revealed a bug

– when lastj = *j in stclose, array bounds error

11/20/2007 69

More invariant uses

• Showed procedures used in limited ways

– makepat

start = 0 and delim = ’\0’

• Demonstrated test suite inadequacy

– #calls(in_set_2) = #calls(stclose)

• Changes in invariants validated program changes

– stclose: *j = orig(*j)+1

– plclose: *j  orig(*j)+2

11/20/2007 70

Experiment 2 conclusions

• Invariants

– effectively summarize value data

– support programmer’s own inferences

– lead programmers to think in terms of invariants

– provide serendipitous information

• Additional useful components of Daikon

– trace database (supports queries)

– invariant differencer

11/20/2007 71

Other experiments

•Students

–UW CSE 142 (C, small)

–MIT 6.170 (Java,  5000
lines)

•Testing research

–Hoffman (Java, 2000 lines)

–Siemens (C, ~500 lines)

•Program checkers

–Xi (Java, small)

–ESC (Java, 500 lines)

•Textbooks

–Gries (Lisp, tiny)

–Weiss (Java, small)

–Java in a Nutshell (Java, 

300 lines)

•Medic planner (Lisp, 13,000

lines)

11/20/2007 72

Ways to obtain invariants

• Programmer-supplied

• Static analysis: examine the program text

[Cousot][Gannod]

– properties are guaranteed to be true

– pointers are intractable in practice

• Dynamic analysis: run the program

– complementary to static techniques

11/20/2007 73

Dynamic invariant detection

• Look for patterns in values the program computes

–Instrument the program to write data trace files

–Run the program on a test suite

–Invariant engine reads data traces, generates
potential invariants, and checks them

• Roughly, machine learning over program traces

11/20/2007 74

Running the program

• Requires a test suite

– Standard test suites are adequate

– Relatively insensitive to test suite (if large enough)

• No guarantee of completeness or soundness

– Useful nonetheless (cf. Purify, ESC, PREfix)

– Complementary to other techniques and tools

11/20/2007 75

Sample invariants

• x,y,z are variables; a,b,c are constants

• Invariants over numbers

– unary: x = a, a  x  b, x  a(mod b), …

– n-ary: x  y, x = ay + bz + c,
x = max(y, z), …

• Invariants over sequences

– unary: sorted, invariants over all elements

– with sequence: subsequence, ordering

– with scalar: membership

• Why these invariants?

11/20/2007 76

Checking invariants

• For each potential invariant:

– Instantiate

• That is, determine constants like a and b in y =
ax + b

– Check for each set of variable values

– Stop checking when falsified

• This is inexpensive

– Many invariants, but each cheap to check

– Falsification usually happens very early

11/20/2007 77

Performance: runtime growth

• Cubic in number of variables at a program point

– Linear in number of invariants checked/discovered

• Linear in number of samples (test suite size)

• Linear in number of instrumented program points

11/20/2007 78

Relevance

• Our first concern in this research was whether we
could find any invariants of interest

• When we found we could, we found a different
problem

– We found many invariants of interest

– But most invariants we found were not relevant

11/20/2007 79

Improved invariant relevance

• Add desired invariants

– Implicit values

– Unused polymorphism

• Eliminate undesired invariants (and improve

performance)

– Unjustified properties

– Redundant invariants

– Incomparable variables

11/20/2007 80

1. Implicit values
Find relationships over non-variables

• array: length, sum, min, max

• array and scalar: element at index, subarray

• number of calls to a procedure

• …

11/20/2007 81

Derived variables

• Successfully produces desired invariants

• Adds many new variables

– slowdown

– irrelevant invariants

• Staged derivation and invariant inference

– avoid deriving meaningless values

– avoid computing tautological invariants

11/20/2007 82

2. Unused polymorphism

• Variables declared with general type, used with more specific

type

– Ex: given a generic list that contains only integers, report that

the contents are sorted

• Also applicable to subtype polymorphism

11/20/2007 83

Unused polymorphism example

class MyInteger { int value; … }

class Link { Object element; Link next; … }

class List { Link header; … }

List myList = new List();

for (int i=0; i<10; i++)

myList.add(new MyInteger(i));

• Desired invariant in class List

– header.closure(next).element.value: sorted by 

11/20/2007 84

Polymorphism elimination

• Pass 1: front end outputs object ID, runtime type, and

all known fields

• Pass 2: given refined type, front end outputs more

fields

• Effective for programs tested so far

• Sound for deterministic programs

11/20/2007 85

3. Unjustified properties

• Given three samples for x:

– x = 7

– x = –42

– x = 22

 Potential invariants:

– x  0

– x  22

– x  –42

11/20/2007 86

Statistical checks:

check hypothesized distribution

• Probability of no zeroes (to show x  0) for v

values of x in range of size r

• Range limits (e.g., x  22)

– same number of samples as neighbors

(uniform)

– more samples than neighbors (clipped)

variable value

#
 o

f
s
a
m

p
le

s

11/20/2007 87

Duplicate values

• Array sum program:

i := 0; s := 0;

while i  n do

{ s := s+b[i]; i := i+1 }

• b is unchanged inside loop

• Problem: at loop head

–88  b[n – 1]  99

–556  sum(b)  539

• Reason: more samples inside loop

11/20/2007 88

Disregard duplicate values

• Idea: count a value only if its var was just modified

• Front end outputs modification bit per value

– compared techniques for eliminating duplicates

• Result: eliminates undesired invariants

11/20/2007 89

4. Redundant invariants

• Given

0  i  j

• Redundant

a[i]  a[0..j]

max(a[0..i])  max(a[0..j])

• Redundant invariants are logically implied

• Implementation contains many such tests

11/20/2007 90

Suppress redundancies

• Avoid deriving variables: suppress 25-50%

– equal to another variable

– nonsensical

• Avoid checking invariants:

– false invariants: trivial improvement

– true invariants: suppress 90%

• Avoid reporting trivial invariants:

suppress 25%

11/20/2007 91

5. Unrelated variables

b < p

myweight < mybirthyear

int myweight, mybirthyear;

bool p;

int *p;

11/20/2007 92

Limit comparisons

• Check relations only over comparable variables

– declared program types

– Lackwit [O’Callahan]

11/20/2007 93

Comparability results

• Comparisons:

– declared types: 60% as many comparisons

– Lackwit: 5% as many comparisons; scales well

• Runtime: 40-70% improvement

• Few differences in reported invariants

11/20/2007 94

Richer types of invariant

• Object/class invariants

– node.left.value < node.right.value

– string.data[string.length] = ’\0’

• Pointers (recursive data structures)

– tree is sorted

• Conditionals

– if proc.priority < 0 then

proc.status = active

– ptr = null or *ptr > i

11/20/2007 95

Pointer experiment

• Data structures from Weiss’s Data Structures and

Algorithm Analysis in Java

• Identified goal invariants by reading book

• Added linearization and data splitting to Daikon

• Results

– 90-100% of goal invariants

– few extraneous invariants

11/20/2007 96

Object invariant

• class LinkedList { Link header; … }

• class Link { int element; Link next; … }

• Object invariant:

– header  null

– header.element = 0

– size(header.closure(next))  1

11/20/2007 97

Conditional pointer invariant

• At exit of
LinkedList.insert(Object x, LinkedListItr p)

• if (p  null and p.current  null) then

size(header.closure(next)) =

• size(orig(header.closure(next))) + 1

• else

header.closure(next)) =

orig(header.closure(next))

11/20/2007 98

Linearize data structures

• Traverse pointer-directed data structures

• Present to invariant engine as sequence

– cyclicity determined by front end

11/20/2007 99

Conditionals: mechanism

• 1. Split the data into parts

• 2. Compute invariants over

each subset of data

• 3. Compare results, produce

implications

if even(x)then

y = 0

else

y = 2x

11/20/2007 100

Data splitting criteria

• Static analysis

• Distinguished values: zero, source literals, mode,

outliers, extrema

• Exceptions to detected invariants

• User-selected

• Exhaustive over random sample

11/20/2007 101

Scaling

• Technology

– many program points

– large data structures

– solution: next slide

• Utility

– many program points

– different invariants

– different uses

– solution: experiments, case studies

11/20/2007 102

Incremental inference

• Online algorithm improves

– response time

– space

– front end computation

– back end computation

• Process each variable value once, then discard

• Stop checking invariants after falsification

• To do: selectively disable instrumentation

11/20/2007 103

Summary

• Dynamic invariant detection is feasible

– Conceived and developed the idea

– Prototype implementation

• Dynamic invariant detection is accurate & useful

– Techniques to improve basic approach

– Experiments provide preliminary support

• Dynamic invariant detection is a challenging and

promising area for research and practice

• See Ernst’s web site at MIT for lots more

11/20/2007 104

Path Profiling: Ball and Larus

#include <stdio.h>

main(t,_,a)

char *a;

{

return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):

1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?

main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,

"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+,/n{n+,/+#n+,/#\

;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l \

q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#\

){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' \

iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \

;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \

}'+}##(!!/")

:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a=='/')+t,_,a+1)

:0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a,

"!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);

}

11/20/2007 105

What does it do?

Run it!
• On the first day of Christmas my true love gave to me

a partridge in a pear tree.

• On the second day of Christmas my true love gave to me

two turtle doves

and a partridge in a pear tree.

• On the third day of Christmas my true love gave to me

three french hens, two turtle doves

and a partridge in a pear tree.

...

• But why?

– http://www.research.microsoft.com/~tball/papers/XmasGift/

– Reverse engineering the Twelve Days of Christmas

11/20/2007 106

Counting arguments

• The poem takes O(N*N) time to read and O(N*N) space to write

– N is the number of gifts

• We can derive an exact count of the number of times gifts

• A gift with ordinal value t is mentioned 13-t times in the poem

– For example, "five gold rings" occurs 13-5=8 times

• Summing over all gifts yields 1+2+...11+12 = 13*6 = 78 total gift

mentions

– 66 mentions of non-partridge gifts

11/20/2007 107

Continuing like this…key numbers

are

• 12 days of Christmas (also 11, to catch "off-by-one"

cases)

• 26 unique strings

• 66 occurrences of non-partridge-in-a-pear-tree

presents

• 114 strings printed

• 2358 characters printed

11/20/2007 108

Pretty printing the program...

/* pretty-printed version of twelve days of christmas program */

#include <stdio.h>

main(t,_,a)

char *a;

{

return

((!0) < t)

? ((t < 3

? main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a))

: 1),

(t < _

? main(t+1,_,a)

: 3),

(main(-94,-27+t,a)

&& (t==2

? (_ < 13

? main(2,_+1,"%s %d %d\n")

: 9)

: 16)))

: (t < 0

? (t < -72

?

11/20/2007 109

Structure of the program

• After some pretty easy work, the program consists of
just main

– Calls itself repeatedly

• No loops, only recursion

– No assignments to any variables

– Two large strings appear to encode the text of the

poem

11/20/2007 110

main: three arguments

• The first argument t is count of the number of

arguments on the command line (including the name

of the program itself)

• The selection of different legs of the function seem to

be driven by the parameter t

11/20/2007 111

Use profiling to extract counts

• Apply the Hot Path Browser (HPB) tool (Ball, Larus

and Rosay)

– Instruments programs to record and display

Ball/Larus path profiles

– A Ball/Larus path profile counts how many times

each acyclic intraprocedural path executes

11/20/2007 112

11/20/2007 113

• The upper left pane shows the

statistics about each executed

path

• 12 out of a total of 24 possible

paths executed

• The paths listed in ascending

order of frequency

• The path with id 13 has been

selected (red line) and

highlighted in the source code

view

11/20/2007 114

Path clusters by frequency:
manually identify computational signature

• Path 0 initializes the recursion with the call main(2,2,...)

• Paths 19, 22, and 23 control the printing of the 12 verses

– Path 19 represents the first verse

– Path 23 the middle 10 verses

– Path 22 the last verse

– The sum of these paths' frequencies is 12

– The browser can help show that each of the paths covers a different set of

recursive calls to main

• Paths 9 and 13 control the printing of the non-partridge-gifts within a verse

– The frequencies of the two paths sum to 66

11/20/2007 115

More

• Paths 2 and 3 print out a string

– Each path has frequency 114, the exact number of strings predicted by our

model

• Paths 1 and 7 print out the characters in a string

– Each path executes 2358 times

• Paths 4 and 5 with the large and unusual frequencies of 24931 and 39652?

– Path 4 skips over n sub-strings in the large string

• Every time a sub-string is printed, a linear search through the text string

is done to find the string

– Path 5 linearly scans — for each character to be printed — the string that

encodes the character translation to find the character that matches the

current character to be printed

11/20/2007 116

Jinsight: De Pauw, Sevitsky, et al. (IBM)

• Tools for analyzing the dynamic behavior of Java programs

– Visualization

– Pattern extraction

– Database query

– Multidimensional analysis

• Applied to

– performance analysis

– memory leak diagnosis

– debugging

– program understanding

• A special focus on the analysis of large, complex, data-intensive,

and web-based systems

11/20/2007 117

Tasks

• Visualizations of object usage, garbage collection and the

sequence of activity in each thread

• Pattern visualizations extract structure in repetitive calling

sequences and complex data structures

– Analyze large amounts of information in a concise form

• Information exploration

– Specify filtering criteria

– Drill down from one view to another to explore details

– Create units that match features of study

• Measurement

– Execution activity or memory summarized at any level of

detail, along call paths, and along two dimensions

simultaneously

11/20/2007 118

Object histogram view:
instances grouped by class, indicating level of activity

11/20/2007 119

Object histogram view

• Class names along the left edge

• Each rectangle denotes an
instance of that class or the
amount of memory consumed by
instances of the class

• A diamond shape denotes the
class object for a given class

• A rectangle's color will vary
according to a black-to-blue-to-red
color spectrum

• Garbage collected objects appear
as rectangular outlines

11/20/2007 120

Method histogram view:

methods grouped by class

•

11/20/2007 121

• Class names along the left

edge

• Rectangles represent method

of the class to its left

11/20/2007 122

Call tree view:
Summarize call paths from or to a given set of method invocations

11/20/2007 123

Execution view:
communication among objects per thread as a function of time

11/20/2007 124

• Object represented by vertical stripe
colored according to the object's class

• Time progresses downward and time
units on right

• A stripe's top edge is the time of
method call

– The height reflects total time
spent executing the method

• Stripes cascade to the right as
methods sends messages

• Stripes grouped in columns by thread

• Leftmost column reserved for garbage
collection information

11/20/2007 125

Zoomed in for detail

11/20/2007 126

Execution pattern view: summarizes

invocations of a method and highlights the differences

•

11/20/2007 127

A summary of all the println occurrences

in the trace

• Reveals that all println messages
produce the same pattern of
execution except for one area of
divergence

• Mouse the bright blue stripe to
identify it as a call to
java/io/Writer.write.

–"1X" indicates that this
particular call pattern occurred
just once

• ½ in beveled frame indicates there
are two variant execution patterns
at this point and that pattern 1 is
shown

11/20/2007 128

Reference pattern view

11/20/2007 129

Shows patterns of references to or

from a set of objects

• Squares represent objects, each
colored uniquely by class

• A diamond represents a class
object

• Single squares denotes a single
instance

• Twin squares represent multiple
instances

• Arrows between nodes denote one
or more references between
instances

• An arrow points to the object(s)
being referenced

11/20/2007 130

Slices

(not Weiser slices)

• A slice is a subset of the trace information corresponding to a

user-selected feature in a program

– Applies to any view

• Slices intended to filter out extraneous information, focusing

analysis on one area

• Slices give you an extra dimension for measuring program

execution

– Can compute any measurement about a program relative to

any defined slice

• Ex: define slices to represent functional areas of your

program; then measure execution time in each thread,

method, method invocation, etc. spent in each functional

area

11/20/2007 131

Workspaces:
collections of filterings

11/20/2007 132

Happy Turkey!

